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Abstract 
 
Cryptography is an important technique among various applications. In the 
telecommunication, cryptography is necessary when an untrusted medium is 
communicated in the network. RSA is a public-key cryptography algorithm to 
use a pair (N, E) as the public key and D as the private key. The N is the product 
of two large prime numbers p and q that are kept secret. It is very hard and no 
known polynomial time algorithms can be used to extract p and q from a large 
number N. There are many methods of factoring large numbers have been 
proposed. The advantages of computing power and memory bandwidth for 
modern GPUs have made porting applications on it become a very important 
issue. In this paper, we proposed an efficient parallel RSA decryption algorithm 
for many-core GPUs with CUDA. The experimental results showed that the 
proposed GPU-based algorithm can achieve 1197.5x average speedup compared 
with the CPU-based algorithm, and within a reasonable time to find out the 
result of factoring large numbers. 
 
Keywords: Cryptography, Parallel Processing, RSA, CUDA, Graphics 
Processing Units 
 
1.  Introduction 
 
Cryptography is an important technique among various applications, especially 
for Internet and business transactions. For most of communication applications, 
several specific security requirements are needed, including the authentication, 
privacy, integrity, and non-repudiation. Cryptography can protect data and be 
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used for the user authentication. In the telecommunication, cryptography is 
necessary when an untrusted medium is communicated in the network. Most of 
cryptography algorithms can be classified into three types: secret-key 
(symmetric) cryptography, public-key (asymmetric) cryptography, and hash 
functions [21].  
 

For the secret-key cryptography, only a single key is used for both 
encryption and decryption, and it is also called symmetric encryption. Some 
secret-key cryptography algorithms have been proposed in the past, such as 
Data Encryption Standard (DES) [24], Advanced Encryption Standard (AES) 
[25], and International Data Encryption Algorithm (IDEA) [16]. For the public-
key cryptography, two keys are used; one for encryption and another for the 
decryption, and the public-key cryptography is also called asymmetric 
encryption. Some public-key cryptography algorithms have been proposed in 
the past, such as RSA [31], Diffie-Hellman Key Exchange [6], and Elliptic 
Curve Cryptography (ECC) [12, 34]. For hash functions, no key is used, but a 
mathematical transformation is used to irreversibly encrypt the information, and 
it is also called one-way encryption. Some hash function algorithms have been 
proposed in the past, such as Message Digest (MD) algorithms (such as MD5 
[30]), Secure Hash Algorithm (SHA) [33], and Whirlpool [1]. 

 
RSA is an asymmetric cryptography algorithm and developed by Rivest, 

Shamir, and Adleman in 1978 [31]. RSA is still widely used in hundreds of 
software products and electronic data. In the RSA algorithm, a pair (N, E) and D 
are the public key and private key, respectively. The N is the product of two 
large prime numbers p and q, and the D is selected according to the formula: 
E．D =(1 mod ψ), where ψ = (p-1)×( q-1). To encrypt a plaintext message M 
with RSA algorithm, a ciphertext C is computed by the formula: ME mod N with 
public key (N, E). To decrypt the ciphertext by reversing the above operation, 
the message M is computed by the formula: CD mod N with public key N and 
private key D. Therefore, for encrypting a plaintext message M or decrypting a 
ciphertext C, it is very important to compute the arithmetic modulo N efficiently. 
Moreover, the security of RSA algorithm relies on the hardness of factoring the 
large number N without the private key D. Fortunately, it is very hard and no 
known polynomial time algorithms can be used to extract p and q from a large 
number N, such as RSA-2048 for 2048-bit integers.  

 
In order to accelerate the speed of factoring the large number N, several 

efficient methods were proposed, such as Fermat's Factorization [20], Pollard's 
p-1 Factorization [28], Pollard's ρ Factorization [29], and The elliptic curve 



Factorization [17]. However, these methods still are very time-consuming under 
the modern CPU, even for a medium-sized number N, such as RSA-64 and 
RSA-128. Therefore, these methods were re-designed with the reconfigurable 
hardware device in the past. For example, in 2005, Pelzl et al. proposed the 
hardware-based implementation for the elliptic curve Factorization [27] on 
FPGA and an embedded microcontroller. In 2006, Gaj et al. proposed another 
implementation of elliptic curve Factorization with the reconfigurable hardware 
method [11] on FPGA, and achieved better performance than that by Pelzl et al. 
[27]. In 2010, Chen and Schaumont proposed a scalable parallel programming 
scheme, pSHS, to map the Montgomery multiplication to a general multicore 
architecture [2]. Montgomery multiplication is an important part of modular 
multiplications and exponentiations in the public-key cryptography. In 2007, on 
the IBM Cell processor, Costigan and Scott have tried to accelerate RSA in the 
OpenSSL library [5], and after that Costigan and Schwabe also have 
implemented a fast elliptic curve Diffie-Hellman key exchange [4] on the Cell 
processor in 2009. 

 
Current high-end graphics processing units (GPUs), contain up to hundreds 

cores per chip, are very popular in the high performance computing community. 
GPU is a massively multi-threaded processor and expects the thousands of 
concurrent threads to fully utilize its computing power. In the past, several 
cryptography algorithms have been ported on GPUs. Cook et al. studied the 
feasibility of implementing symmetric-key ciphers for AES in a GPU using the 
OpenGL API [3]. Yamanouchi also proposed a similar approach with OpenGL 
extension specific for AES [36]. Moss et al. investigated the implementation 
and performance of modular exponentiation using a GPU with the OpenGL 
Shading Language to execute operations required in the RSA algorithm [22, 23]. 
They focused on implementing the modular multiplication using a Residue 
Number System (RNS) with the large number N. Fleissner also implemented an 
accelerated Montgomery method for modular exponentiation with General-
purpose computing on graphics processing units (GPGPU) [8]. Due to more 
layer transfer interface call of GPGPU using graphics APIs (OpenGL, DirectX, 
and etc.), these works cannot make effective for using computing power of the 
GPU.  

 
The ease of access GPUs by using Compute Unified Device Architecture 

(CUDA) [26], as opposite to graphic APIs, has made the supercomputing 
available to the mass. CUDA uses a new computing architecture, named Single 
Instruction Multiple Threads (SIMT), and SIMT is different from the Flynn's 
classification [9]. The advantages of the computing power and memory 

bandwidth for modern GPUs have made porting applications on it become a 
very important issue. Manavski [19] used the CUDA API as the work proposed 
by Rosenberg [32] to implement AES. In 2008, Szerwinski et al. employed 
CUDA API to develop efficient modular exponentiation and elliptic curve 
scalar multiplication [35]. Harrison and Waldron also provided a GPU sliding 
window exponentiation implementation with CUDA API based on Montgomery 
exponentiation using both radix and residue number system representations [13]. 
Hermans et al. proposed GPU implementations for NTRU Encrypt in 2010 [14]. 
Jang et al. designed a GPU approach for SSL with CUDA [15]. Fan et al. 
presented a novel parallelized implementation of RSA algorithm using JCUDA 
and Hadoop [7]. 

 
Although several approach as shown in above have been proposed to 

accelerate the RSA algorithm by using a GPU with CUDA, however, all of 
them focused on encrypting a plaintext message M or decrypting a ciphertext C. 
Therefore, how to compute the arithmetic modulo N efficiently is the important 
issue. Most of them tried to improve the implementation of modular 
exponentiation with Montgomery method and RNS. According to our best 
knowledge, no work has been proposed or proven to accelerate the speed of 
factoring the large number N by using a GPU with CUDA. A near approach was 
proposed by Fujimoto to accelerate the computation of the greatest common 
divisor (GCD) for long integers with CUDA [10]. However, this work did not 
be applied to factor the large number N for RSA algorithm. Hence, in this paper, 
a GPU-based Pollard's p-1 Factorization Algorithm, GPFA, was proposed to 
accelerate the speed of factoring the large number N by using a GPU with 
CUDA. Since the computations in the Pollard's p-1 Factorization can be 
subdivided into independent iterations, GPFA used the inter-task parallelization 
[18] technique to do the computations. We implemented GPFA with various 
parameters and obtained corresponding performance. We also analyzed the 
relationship between parameters and performance in this paper. In the 
experimental tests, we compared GPFA with the CPU-based Pollard's p-1 
Factorization Algorithm, CPFA. GPFA can achieve 1197.5x average speedup 
compared with CPFA among the testing data set, constituted of RSA-41 to 
RSA-64. RSA-64 can be factored within 40 seconds by GPFA in the test. 

 
This paper is organized as follows. In Section 2, preliminary concepts for 

Pollard's p-1 Factorization and CUDA programming model were described 
briefly. Section 3 introduced the implementations of CPFA and GPFA with 
proposed custom number system. Analysis and experimental results were shown 
in Section 4 and Section 5, respectively.  



2.  Preliminary Concepts 
 
2.1 Pollard's p-1Factorization 
 
Pollard's p-1 Factorization method was developed by Pollard in 1974 [28]. The 
method is based on the Fermat's little theorem, which states: 
 

If p is a prime number and a is an integer not divisible by p, then 
)(mod11 pa p ≡−                                               (1) 

 
To factor a large number N is to find a prime number p if p | N, and then obtain 
a formula: )(mod11 pa p ≡− , and it follows that  

K = )(mod011 pa p ≡−−                                         (2) 
 

If assumed that p-1 is m, and m can be increased from m = 1, 2, 3, …, until 
gcd(K, N) = p. However, using this method to find an exact m is not an efficient 
method, since it needs to do p-1 operations and the time complexity grows 
exponentially when p increases. It means that it needs a way to find an exact m 
quickly. The idea of Pollard's p-1Factorization is not to find the exact m directly 
and assume that an integer m', where it satisfied p-1 | m', then m' = cp )1( −  and 
obtain formula:  

)(mod0111 )1('
paa cpm c

≡=−=− −                               (3) 
 

and 

pNam =),gcd(
'

                                                  (4) 
 

Therefore, we only need to find an integer m' which it satisfied p-1 | m'. In order 
to get an exact m', the possibility to meet conditions increases when generating 
many prime numbers before the factorization. 
 
2.2 CUDA programming model 
 
CUDA is an extension of C/C++ which users can write scalable multi-threaded 
programs for GPUs computing [26]. The implementation of the CUDA program 
is divided into two parts: host and device. The host mainly is executing by CPU 
and the device is mainly executing by GPU. The program which is executed on 

the device called a kernel. The kernel can invoke as a set of concurrently 
executing threads, and kernel program will be executed by threads. These 
threads are in the hierarchical organization which can be combined into thread 
blocks and grids. A grid is a set of independent thread blocks, and a thread 
block contains many threads. Threads in a block can communicate and 
synchronize with each other. Threads within a thread block can communicate 
through a per-block shared memory (PBSM), whereas threads in different 
blocks cannot communicate or synchronize directly. In addition to PBSM, there 
are four kinds of memory type: per-thread private local memory (LM), global 
memory (GM) for data shared by all threads, texture memory (TM), and 
constant memory (CM). Among these memory types, CM and TM can be 
regarded as fast read only caches; the fastest memories are the registers and 
PBSM.  
 

The basic processing unit in the NVIDIA's GPU architecture is called the 
Streaming Processor (SP). There are many SPs which actually do the 
computations on GPU. A group of SPs can be combined into a Stream 
Multiprocessor (SM). While the program runs the kernel function, the GPU 
device schedules thread blocks for execution on the SM. The threads running on 
the SM in small groups of 32, called warps, is SIMT scheme, every SM have a 
warp scheduler to execute warps. For example, NVIDIA GeForce GTX 260, 
there is 16KB of PBSM for each SM with 16,384 32-bit registers. The number 
of thread blocks assigned to the SM is affected by the registers and PBSM used 
in a thread block. SM can be assigned up to 8 thread blocks. The GM, LM, TM, 
and CM are all located on the GPU’s memory. In addition to PBSM accessed by 
single thread block and registers only accessed by single thread, the other 
memory can be used by all the threads. The caches of TM and CM are limited to 
8KB per SM. The best access strategy for CM is all threads read the same 
memory address. The texture cache is designed for threads to read between the 
proximity of the address would be take a better reading efficiency. In NVIDIA 
new architecture Fermi, there have more hardware expansion. For example, 
NVIDIA C2050, there is configurable 48 KB or 16KB of PBSM, since it add the 
parallel cache mechanism with the configurable L1 and L2 Cache, L1 cache for 
each SM and L2 cache shared by all SM. In the Fermi architecture, the number 
of SPs can be up to 512, and two warp schedulers per SM. 
 
3.  Methods 
 
3.1 CPFA (CPU-based Pollard's p-1 Factorization Algorithm) 
 



In this paper, CPFA is implemented according to the conditions shown in 
Section 2.1 and the designed CPFA algorithm was shown below. In CPFA, the 
goal is to factor a public key N to find p or q. Since the procedure of Pollard's p-
1 Factorization may need to process the large integers, a custom integer system 
(CIS) was proposed to represent and do the operations for large integers. For 
example, for an integer N represented as a decimal number 
5201217345624025310 or hexadecimal number 0xB8C8CBD2DAEE7D, CIS 
can be used to represent it and compute the following factorization. The 
proposed CIS was designed for CPFA and GPFA, respectively, and described in 
Section 3.2. Before executing CPFA, a prime table consisting of prime numbers 
is needed. The number of prime numbers in the prime table is not fixed.  In the 
experimental tests, a prime table with 173,057,268 prime numbers ranged 
among 32-bit integers was constructed. The value of an integer B is assumed 
smaller than the biggest prime number in the prime table. All of the primer 
numbers smaller than B are extracted from the prime table to do the 
computations in step 3. Therefore, the value of B will affect the computation 
time of step 3 directly. Under a fixed number of loop iterations Tc, the value of 
B will be changed to twice when CPFA could not find p or q for an integer N.  
 
CPU-based Pollard's p-1 Factorization Algorithm 
 
//Object: to find p or q from an integer N 
//Load the prime table from a disk to the main memory  
 
for (integer i from 1 to Tc) 
{ 
    Step1. Choose an integer ac, it could be 2 or generated randomly.  

Step2. Extract a prime number p smaller than B from the prime table.  
Step3. Compute:  

⎣ ⎦∏=
≤≤ Bp

pBpe
2

log/log
 

 
Step4. Let b = Nae

c mod , if 1 < gcd(b-1, N) < N, then return the value of  
greatest common divisor gcd(b-1, N). 

Step5. Follow step 4, if gcd(b-1, N) equals to 1 or N, then go to step 2. 
Step6. If finding a prime number p larger than B, then execute the next  

iteration (B=2B).  
} 

3.2 CIS (Custom Integer System) 
 
In the past, many research tried to improve the implementation of modular 
exponentiation with Montgomery method and RNS. For a large integer in the 
RNS, it can be encoded into an RNS representation with a basis, a set of co-
prime integers, and then this integer is stored as a vector of components 
(modulo the basis for each component). For the multiplication and addition of 
two large integers encoded by RNS with the basis, it is easy to do since the 
computation of each component is independent. This system is useful for 
encrypting a plaintext message M or decrypting a ciphertext C with a fixed pair 
(N, E) and D. However, the RNS may be not suitable for CPFA and GPFA. The 
reason is that there are an integer ac, many prime numbers p, and an integer N 
should be computed in steps 3 to 5. For many prime numbers p, it may be time-
consuming to select a feasible basis for each p and then translate this p to a 
vector of components. Therefore, it needs to design an adjustable data structure 
to represent the integer and do the following factorization.  
 

Hence, CIS and its operations are designed and implemented for CPFA and 
GPFA, respectively. However, some extra operations or data structures are not 
implemented specifically in CIS, such as the operations or structures for the 
negative integer number, since CIS is only designed for CPFA and GPFA at 
present. In general, a large integer can be formed as a character array to store 
each digit by one byte. For example, an integer number 123 can be stored in a 
character array {1, 2, 3} with size of 3 bytes. This method is simple but needs 
more space when doing the operations of the integers. For example, when doing 
the sum operation for two integers 123 and 987, it needs 9 bytes to store these 
two integers and the possible carry for each digit. Moreover, it needs 6 addition 
operations, not 3 addition operations, to compute the digit addition and the carry. 
Therefore, a naive idea in CIS is to use the unsigned integer type to store the 
integer. If an integer number is larger than the scope of one unsigned integer, 
then use two or more unsigned integer to store this integer number. In addition, 
the reserve space in the unsigned integer type is used to store the possible carry. 
An example of integer representation in CIS is shown in Figure 1. In Figure 1, 
the size of unsigned integer type is 32-bit and we can use eight unsigned integer 
(256-bit of total) to store a 128-bit integer. The black area is the half size (16-bit) 
of the unsigned integer to store the integer (128-bit of total) and the white area 
is the half size (16-bit) of the unsigned integer to store the possible carry (128-
bit of total). By using the unsigned integer type, it can reduce the space 
requirement for the large integer; however, the operations for large integers 
represented in CIS should be designed.  



 
Figure 1: An example of integer representation in CIS. 

 
 

  
(a) addition operation in CIS. (b) subtraction operation in CIS. 

Figure 2: The addition and subtraction operations for two large integers in 
CIS.  
 
 

For the operations of large integers represented in CIS, the procedure is to 
do the operation for each unsigned integer in sequential. Figure 2 shows the 
addition and subtraction operations for two large integers in CIS, respectively.  
In Figure 2(a), each integer is represented in CIS and stored in arrays a, b. The 
addition result without the possible carry is stored in array c’ and then combine 
the carry to obtain the final result. In Figure 2(b), the procedure of subtraction 
operation for two large integers in CIS is similar to that of addition operation. 
However, the borrowing problem should be considered. In addition to addition 
and subtraction operations of large integers, we also implement the 
multiplication, shift, and modulo operations of large integers in CIS. 

 
3.3 GPFA (GPU-based Pollard's p-1 Factorization Algorithm) 
 
In CUDA, there are two parallelization techniques [18] to map tasks into 
threads or thread blocks, one is inter-task parallelization and another is intra-
task parallelization. For inter-task parallelization, each thread exactly executes 
one task; for intra-task parallelization, each task is executed by one thread 
block. In this paper, the proposed GPFA is designed by using the inter-task 
parallelization technique.  
 

The designed GPFA algorithm was shown below. 

GPU-based Pollard's p-1 Factorization Algorithm 
 
//Object: to find p or q from an integer N 
//Load the prime table from a disk to the main memory of CPU and then 
Transfer it to the global memory of GPU. 

 
//gridDim.x is the built-in variable represents the size of grid (number of thread 
blocks in one grid). 

// blockDim.x is the built-in variable represents the size of block (number of 
threads in one thread block). 

//blockIdx.x is the built-in variable represents the 1-D thread block index within 
the grid. 

//threadIdx.x is the built-in variable represents the 1-D thread index within the 
thread block. 

 
int linearID = blockDim.x×blockIdx.x+threadIdx.x; 
int total_num_of_thread = gridDim.x×blockDim.x; 
int ag = 2+linearID; 
 
for (integer i from blockIdx.x×blockDim.x to blockIdx.x×blockDim.x+Tg -1) 
{ 
 
 //pr(j) is the j-th prime number in the prime table. 
 for (unsigned int j= linearID; pr(j) < B ; j+= total_num_of_thread) 
 { 
    Compute:  

⎣ ⎦∏=
≤≤ Bp

pBpe
2

log/log
 

 
    Let b = Nae

c mod , if 1 < gcd(b-1, N) < N, then return the value of  
greatest common divisor gcd(b-1, N) to the global memory. 
 

    Follow last step, if gcd(b-1, N) equals to 1 or N, then continue.  
 } 
 
 ag = ag × ag %RAND_MAX+i+linearID; 
} 
 



In the beginning, the GPFA is the same with CPFA to load the prime table 
from a disk to the main memory of CPU, and make necessary adjustment with B 
and Tg. However, in GPFA, the data must be transferred from CPU to GPU and 
then execute the GPU kernel function. The first problem in GPFA is how to 
allocate the prime table and store the results (p or q) in the GPU’s memory. 
Since the prime table will be accessed frequently by threads in thread blocks, it 
is worth to use a cache mechanism to access it. When the size of the prime table 
is small, it can be stored in the CM with 64 KB size limitation; however, the 
prime table in the experimental tests is close up to 70 MB, the prime table is 
allocated in the TM. Figure 3 shows that each thread loads the unique prime 
number from the prime table in the TM, and the registers of each thread are used 
to store a large integer N and an integer ag. The integer ag is selected as a 
random number ac in CPFA. Three arguments, ag, prime numbers, and a large 
integer N, are involved in the execution of kernel function on GPU. In GPFA, if 
one thread obtains the p or q, it returns the result to the GM immediately and 
then the result is transferred from the GM of GPU to the main memory of CPU.  

 
In CUDA, there is an important characteristic that each thread in a thread 

block has its own unique thread ID. Hence, GPFA can use different IDs (threads) 
to deal with different data (prime numbers in the prime table). By this 
characteristic, the unique ID of each thread among a grid can be calculated, 
called thread linearize. In the 1-D type of thread blocks and threads, thread 
linearize is: 

linearID = blockDim.x×blockIdx.x+threadIdx.x,                  (5) 
 

where the blockDim.x, blockIdx.x, and threadIdx.x are the built-in variables in 
CUDA, they individually represent the size of block (number of threads in one 
block), block ID (thread block index within the grid), and thread ID (thread 
index within the thread block), respectively. For the selection of ag, it can use 
the thread linearize to pick out the unique ag for each thread, such as: 

ag = 2+linearID                                              (6) 
 

The execution steps of inner loop in GPFA are almost the same as the steps 
3 to 5 in CPFA, except for returning the value of gcd result to the GM. By the 
SIMT, when GPFA could not find p or q for an integer N in the inner loop, the 
value of ag will be updated by each thread with the formula: 

ag = ag × ag %RAND_MAX+i+linearID                       (7) 
 

There are Tg times controlled by the external loop to update the value of ag by 
each thread in thread blocks. 

 
Figure 3: Memory allocation scenario of GPFA in CUDA. 

 
4.  Performance Analysis 
 
In CPFA, the main object is to find p or q for a large integer N by generating a 
random value ac and sequential searching a series of prime numbers (denoted as 
pri) from the prime table (inner loop in CPFA). Assume that there are k prime 
numbers {pr1, pr2, ..., prk-1, prk} in the prime table. If the number of external 
loop (Tc) in CPFA is u, there are u random values of { ac,1, a c,2, ..., a c,u-1, a c,u}. 
The computation cost of CPFA is determined by the B and Tc. In the worst case, 
where the result of prime number is equal to B and Tc is equal to u, the time 
complexity of CPFA is O(ku). Although the values of B and Tc can be set to 
small, CPFA may not find the result. According to the asymptotic law for the 
distribution of prime numbers, the number of prime numbers ( )(xπ ), less than 
or equal to a real number x, is close to  

x
xxπ

ln
)( = .                                                       (8) 

 

Therefore, k equals to 
B

BBπ
ln

)( = . Assumed that t is a fixed value, the time 

complexity of CPFA is O( u
B

B
ln

). 



In this paper, GPFA is designed by using the inter-task parallelization 
technique. Assume that there are k prime numbers {pr1, pr2, ..., prk-1, prk} in the 
prime table. It means that each thread do the computation for a pair (pri, ag) in 
the inner loop. If there are gridDim.x×blockDim.x threads to do the tasks in the 
inner loop, it needs y times to do the computation for all prime numbers in the 
worst case, where  
 

)blockDim.x×gridDim.x(ln

blockDim.x×gridDim.x
)(

blockDim.x×gridDim.x

×
=

==

B
B

Bπky
            (9) 

 
Therefore, if the number of external loop (Tg) in GPFA is s and s is a fixed 
value, the time complexity of GPFA is 

O( )
)blockDim.x×gridDim.x(ln

(
×

×
B

Bs ). 

 
Given a detail assumption for the cost of computing a prime number, tc for 

CPFA and tg for GPFA, the theoretical computation time of CPFA and GPFA in 

the worst case will be ctu
B

B )
ln

( and gt
B

Bs ))
)blockDim.x×gridDim.x(ln

((
×

× , 

respectively. Hence, the theoretical speedup can be calculated according to the 
formula:  
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GPFATime
CPFATimespeedup

    (10) 

 
According to the above formula, the speedup increases when the number of 

threads increases. However, the number of threads is not infinite. By the inter-
task parallelization, the number of threads in a thread block is bounded 
according to the memory usage. Moreover, the number of concurrent thread 
blocks is bounded according to the number of SMs. Besides, considering the u 
and s, in general, s is less than u since each thread can obtain various values of  

Table 1: The testing data set represented as hexadecimal numbers. 
Length N p q 
RSA-41 12B1F259795 721F7 29EFD3 
RSA-44 89FD383381B 120FC7 7A3D0D 
RSA-46 3CF5F89ED5F5 C50069 4F37AD 
RSA-47 600FF385C031 FF52D9 605119 
RSA-48 878D4C7D68E9 ABB039 CA1E31 
RSA-56 B8C8CBD2DAEE7D D985797 D978D0B 
RSA-64 6926C73F919FA3E7 79E6711B DCD39125 

 
 
ag and then the possibility to meet conditions by GPFA is larger than that by 
CPFA. However, considering the tc and tg, tg is larger than tc since the clock rate 
of CPU is faster than that of SP on GPU. Overall, GPFA can achieve better 
performance than CPFA according to the performance analysis. 
 
5.  Experimental Results 
 
In this paper, GPFA was implemented on three various GPU architectures: 
GTX-260, S1070, and C2050 GPUs, and CPFA was implemented on Intel 
Core2 Quad Q8200 2.33GHz CPU with 4G RAM running the Linux system. 
The testing data set consisted of RSA-41 to RSA-64, shown in Table 1, was 
used to evaluate CPFA and GPFA. For the testing data RSA-41 to RSA-56, the 
value of B was set to 100,000; the value of B was set to 200,000 for RSA-64. 
For the C2050 GPU, the experimental results are classified into configure and 
nonconfig (non-configure) states to represent the configurable L1 cache of 48 
KB and 16 KB in GPFA, respectively. In GPFA, the CUDA built-in variables 
gridDim.x (size of grid) and blockDim (size of block) were set to 1024 and 64, 
respectively. 
 

Figure 4 illustrated the execution time by CPFA and GPFA under various 
platforms, where y-axis is the scale of logarithm to base 10. In GPFA, the worst 
case is RSA-64 factored within 40 seconds; however, the worst case in CPFA is 
RSA-56 factored within 7,350 seconds. Since the factoring a large integer by 
the Pollard's p-1 Factorization algorithm can be seen as a search problem under 
a possibility, hence, the worst case for CPFA and GPFA may be different. 
Moreover, the computation time is nonlinear, even is non-incremental, when the 
size of input data increases. From Figure 4, the experimental results showed that 
GPFA can greatly reduce the computation time by CPFA.  

 



 
Figure 4: The execution time by CPFA and GPFA under various platforms. 
 
 

 
Figure 5: The speedups by comparing  GPFA with CPFA under various 
platforms. 

 
Figure 6:  The average speedups achieved by GPFA under various 
platforms. 
 
 

Figure 5 illustrated the speedups by comparing GPFA with CPFA under 
various platforms, where y-axis is the scale of logarithm to base 10. From 
Figure 5, GPFA can achieve 2248x speedup for RSA-56 under the 
C2050(configure) GPU. Although the speedups by comparing GPFA with 
CPFA among the testing data set are not linear (search problem), GPFA 
achieved 1197.5x average speedup under the C2050(configure) GPU (Figure 6). 
Figure 6 showed the average speedups achieved by GPFA under various 
platforms. From Figure 6, GPFA achieved at least 240x average speedup under 
the GTX-260. Moreover, the performance by GPFA under C2050(configure) is 
better (about 1.4x) than that by GPFA under C2050(nonconfig). This result 
showed that the performance increases when the cache size on GPU increases. 
 
 
6.  Conclusions 
 
RSA is a public-key cryptography algorithm to use a pair (N, E) as the public 
key and D as the private key. The security of RSA algorithm relies on the 
hardness of factoring the large number N without the private key D. Recently, it 
is very hard and no known polynomial time algorithms can be used to extract p 
and q from a large number N. However, GPU is a massively multi-threaded 
processor and expects the thousands of concurrent threads to fully utilize its 
computing power. Hence, it may be a challenge for the RSA algorithm to 
protect the data when using GPUs with CUDA to factoring the large number N. 



In this paper, an efficient parallel RSA decryption algorithm, GPFA, for 
many-core GPUs with CUDA was proposed. The experimental results showed 
that GPFA can achieve 1197.5x average speedup compared with CPFA, and 
within 40 seconds to find out the result of factoring a RSA-64 integer. Although 
GPFA is not used to factoring RSA-128 or larger integers in this paper, it may 
be possible to factor them by using multiple-GPUs within a reasonable time. 
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