
Efficient Parallel RSA Decryption Algorithm for
Many-core GPUs with CUDA

Yu-Shiang Lin, Chun-Yuan Lin1, Der-Chyuan Lou
Department of Computer Science and Information Engineering

Chang Gung University
Taoyuan 333, Taiwan, ROC

coldfunction@gmail.com, {cyulin, dclou}@mail.cgu.edu.tw

Abstract

Cryptography is an important technique among various applications. In the
telecommunication, cryptography is necessary when an untrusted medium is
communicated in the network. RSA is a public-key cryptography algorithm to
use a pair (N, E) as the public key and D as the private key. The N is the product
of two large prime numbers p and q that are kept secret. It is very hard and no
known polynomial time algorithms can be used to extract p and q from a large
number N. There are many methods of factoring large numbers have been
proposed. The advantages of computing power and memory bandwidth for
modern GPUs have made porting applications on it become a very important
issue. In this paper, we proposed an efficient parallel RSA decryption algorithm
for many-core GPUs with CUDA. The experimental results showed that the
proposed GPU-based algorithm can achieve 1197.5x average speedup compared
with the CPU-based algorithm, and within a reasonable time to find out the
result of factoring large numbers.

Keywords: Cryptography, Parallel Processing, RSA, CUDA, Graphics
Processing Units

1. Introduction

Cryptography is an important technique among various applications, especially
for Internet and business transactions. For most of communication applications,
several specific security requirements are needed, including the authentication,
privacy, integrity, and non-repudiation. Cryptography can protect data and be

1 Corresponding author

used for the user authentication. In the telecommunication, cryptography is
necessary when an untrusted medium is communicated in the network. Most of
cryptography algorithms can be classified into three types: secret-key
(symmetric) cryptography, public-key (asymmetric) cryptography, and hash
functions [21].

For the secret-key cryptography, only a single key is used for both
encryption and decryption, and it is also called symmetric encryption. Some
secret-key cryptography algorithms have been proposed in the past, such as
Data Encryption Standard (DES) [24], Advanced Encryption Standard (AES)
[25], and International Data Encryption Algorithm (IDEA) [16]. For the public-
key cryptography, two keys are used; one for encryption and another for the
decryption, and the public-key cryptography is also called asymmetric
encryption. Some public-key cryptography algorithms have been proposed in
the past, such as RSA [31], Diffie-Hellman Key Exchange [6], and Elliptic
Curve Cryptography (ECC) [12, 34]. For hash functions, no key is used, but a
mathematical transformation is used to irreversibly encrypt the information, and
it is also called one-way encryption. Some hash function algorithms have been
proposed in the past, such as Message Digest (MD) algorithms (such as MD5
[30]), Secure Hash Algorithm (SHA) [33], and Whirlpool [1].

RSA is an asymmetric cryptography algorithm and developed by Rivest,

Shamir, and Adleman in 1978 [31]. RSA is still widely used in hundreds of
software products and electronic data. In the RSA algorithm, a pair (N, E) and D
are the public key and private key, respectively. The N is the product of two
large prime numbers p and q, and the D is selected according to the formula:
E．D =(1 mod ψ), where ψ = (p-1)×(q-1). To encrypt a plaintext message M
with RSA algorithm, a ciphertext C is computed by the formula: ME mod N with
public key (N, E). To decrypt the ciphertext by reversing the above operation,
the message M is computed by the formula: CD mod N with public key N and
private key D. Therefore, for encrypting a plaintext message M or decrypting a
ciphertext C, it is very important to compute the arithmetic modulo N efficiently.
Moreover, the security of RSA algorithm relies on the hardness of factoring the
large number N without the private key D. Fortunately, it is very hard and no
known polynomial time algorithms can be used to extract p and q from a large
number N, such as RSA-2048 for 2048-bit integers.

In order to accelerate the speed of factoring the large number N, several

efficient methods were proposed, such as Fermat's Factorization [20], Pollard's
p-1 Factorization [28], Pollard's ρ Factorization [29], and The elliptic curve

Factorization [17]. However, these methods still are very time-consuming under
the modern CPU, even for a medium-sized number N, such as RSA-64 and
RSA-128. Therefore, these methods were re-designed with the reconfigurable
hardware device in the past. For example, in 2005, Pelzl et al. proposed the
hardware-based implementation for the elliptic curve Factorization [27] on
FPGA and an embedded microcontroller. In 2006, Gaj et al. proposed another
implementation of elliptic curve Factorization with the reconfigurable hardware
method [11] on FPGA, and achieved better performance than that by Pelzl et al.
[27]. In 2010, Chen and Schaumont proposed a scalable parallel programming
scheme, pSHS, to map the Montgomery multiplication to a general multicore
architecture [2]. Montgomery multiplication is an important part of modular
multiplications and exponentiations in the public-key cryptography. In 2007, on
the IBM Cell processor, Costigan and Scott have tried to accelerate RSA in the
OpenSSL library [5], and after that Costigan and Schwabe also have
implemented a fast elliptic curve Diffie-Hellman key exchange [4] on the Cell
processor in 2009.

Current high-end graphics processing units (GPUs), contain up to hundreds

cores per chip, are very popular in the high performance computing community.
GPU is a massively multi-threaded processor and expects the thousands of
concurrent threads to fully utilize its computing power. In the past, several
cryptography algorithms have been ported on GPUs. Cook et al. studied the
feasibility of implementing symmetric-key ciphers for AES in a GPU using the
OpenGL API [3]. Yamanouchi also proposed a similar approach with OpenGL
extension specific for AES [36]. Moss et al. investigated the implementation
and performance of modular exponentiation using a GPU with the OpenGL
Shading Language to execute operations required in the RSA algorithm [22, 23].
They focused on implementing the modular multiplication using a Residue
Number System (RNS) with the large number N. Fleissner also implemented an
accelerated Montgomery method for modular exponentiation with General-
purpose computing on graphics processing units (GPGPU) [8]. Due to more
layer transfer interface call of GPGPU using graphics APIs (OpenGL, DirectX,
and etc.), these works cannot make effective for using computing power of the
GPU.

The ease of access GPUs by using Compute Unified Device Architecture

(CUDA) [26], as opposite to graphic APIs, has made the supercomputing
available to the mass. CUDA uses a new computing architecture, named Single
Instruction Multiple Threads (SIMT), and SIMT is different from the Flynn's
classification [9]. The advantages of the computing power and memory

bandwidth for modern GPUs have made porting applications on it become a
very important issue. Manavski [19] used the CUDA API as the work proposed
by Rosenberg [32] to implement AES. In 2008, Szerwinski et al. employed
CUDA API to develop efficient modular exponentiation and elliptic curve
scalar multiplication [35]. Harrison and Waldron also provided a GPU sliding
window exponentiation implementation with CUDA API based on Montgomery
exponentiation using both radix and residue number system representations [13].
Hermans et al. proposed GPU implementations for NTRU Encrypt in 2010 [14].
Jang et al. designed a GPU approach for SSL with CUDA [15]. Fan et al.
presented a novel parallelized implementation of RSA algorithm using JCUDA
and Hadoop [7].

Although several approach as shown in above have been proposed to

accelerate the RSA algorithm by using a GPU with CUDA, however, all of
them focused on encrypting a plaintext message M or decrypting a ciphertext C.
Therefore, how to compute the arithmetic modulo N efficiently is the important
issue. Most of them tried to improve the implementation of modular
exponentiation with Montgomery method and RNS. According to our best
knowledge, no work has been proposed or proven to accelerate the speed of
factoring the large number N by using a GPU with CUDA. A near approach was
proposed by Fujimoto to accelerate the computation of the greatest common
divisor (GCD) for long integers with CUDA [10]. However, this work did not
be applied to factor the large number N for RSA algorithm. Hence, in this paper,
a GPU-based Pollard's p-1 Factorization Algorithm, GPFA, was proposed to
accelerate the speed of factoring the large number N by using a GPU with
CUDA. Since the computations in the Pollard's p-1 Factorization can be
subdivided into independent iterations, GPFA used the inter-task parallelization
[18] technique to do the computations. We implemented GPFA with various
parameters and obtained corresponding performance. We also analyzed the
relationship between parameters and performance in this paper. In the
experimental tests, we compared GPFA with the CPU-based Pollard's p-1
Factorization Algorithm, CPFA. GPFA can achieve 1197.5x average speedup
compared with CPFA among the testing data set, constituted of RSA-41 to
RSA-64. RSA-64 can be factored within 40 seconds by GPFA in the test.

This paper is organized as follows. In Section 2, preliminary concepts for

Pollard's p-1 Factorization and CUDA programming model were described
briefly. Section 3 introduced the implementations of CPFA and GPFA with
proposed custom number system. Analysis and experimental results were shown
in Section 4 and Section 5, respectively.

2. Preliminary Concepts

2.1 Pollard's p-1Factorization

Pollard's p-1 Factorization method was developed by Pollard in 1974 [28]. The
method is based on the Fermat's little theorem, which states:

If p is a prime number and a is an integer not divisible by p, then
)(mod11 pa p ≡− (1)

To factor a large number N is to find a prime number p if p | N, and then obtain
a formula:)(mod11 pa p ≡− , and it follows that

K =)(mod011 pa p ≡−− (2)

If assumed that p-1 is m, and m can be increased from m = 1, 2, 3, …, until
gcd(K, N) = p. However, using this method to find an exact m is not an efficient
method, since it needs to do p-1 operations and the time complexity grows
exponentially when p increases. It means that it needs a way to find an exact m
quickly. The idea of Pollard's p-1Factorization is not to find the exact m directly
and assume that an integer m', where it satisfied p-1 | m', then m' = cp)1(− and
obtain formula:

)(mod0111)1('
paa cpm c

≡=−=− − (3)

and

pNam =),gcd(
'

 (4)

Therefore, we only need to find an integer m' which it satisfied p-1 | m'. In order
to get an exact m', the possibility to meet conditions increases when generating
many prime numbers before the factorization.

2.2 CUDA programming model

CUDA is an extension of C/C++ which users can write scalable multi-threaded
programs for GPUs computing [26]. The implementation of the CUDA program
is divided into two parts: host and device. The host mainly is executing by CPU
and the device is mainly executing by GPU. The program which is executed on

the device called a kernel. The kernel can invoke as a set of concurrently
executing threads, and kernel program will be executed by threads. These
threads are in the hierarchical organization which can be combined into thread
blocks and grids. A grid is a set of independent thread blocks, and a thread
block contains many threads. Threads in a block can communicate and
synchronize with each other. Threads within a thread block can communicate
through a per-block shared memory (PBSM), whereas threads in different
blocks cannot communicate or synchronize directly. In addition to PBSM, there
are four kinds of memory type: per-thread private local memory (LM), global
memory (GM) for data shared by all threads, texture memory (TM), and
constant memory (CM). Among these memory types, CM and TM can be
regarded as fast read only caches; the fastest memories are the registers and
PBSM.

The basic processing unit in the NVIDIA's GPU architecture is called the
Streaming Processor (SP). There are many SPs which actually do the
computations on GPU. A group of SPs can be combined into a Stream
Multiprocessor (SM). While the program runs the kernel function, the GPU
device schedules thread blocks for execution on the SM. The threads running on
the SM in small groups of 32, called warps, is SIMT scheme, every SM have a
warp scheduler to execute warps. For example, NVIDIA GeForce GTX 260,
there is 16KB of PBSM for each SM with 16,384 32-bit registers. The number
of thread blocks assigned to the SM is affected by the registers and PBSM used
in a thread block. SM can be assigned up to 8 thread blocks. The GM, LM, TM,
and CM are all located on the GPU’s memory. In addition to PBSM accessed by
single thread block and registers only accessed by single thread, the other
memory can be used by all the threads. The caches of TM and CM are limited to
8KB per SM. The best access strategy for CM is all threads read the same
memory address. The texture cache is designed for threads to read between the
proximity of the address would be take a better reading efficiency. In NVIDIA
new architecture Fermi, there have more hardware expansion. For example,
NVIDIA C2050, there is configurable 48 KB or 16KB of PBSM, since it add the
parallel cache mechanism with the configurable L1 and L2 Cache, L1 cache for
each SM and L2 cache shared by all SM. In the Fermi architecture, the number
of SPs can be up to 512, and two warp schedulers per SM.

3. Methods

3.1 CPFA (CPU-based Pollard's p-1 Factorization Algorithm)

In this paper, CPFA is implemented according to the conditions shown in
Section 2.1 and the designed CPFA algorithm was shown below. In CPFA, the
goal is to factor a public key N to find p or q. Since the procedure of Pollard's p-
1 Factorization may need to process the large integers, a custom integer system
(CIS) was proposed to represent and do the operations for large integers. For
example, for an integer N represented as a decimal number
5201217345624025310 or hexadecimal number 0xB8C8CBD2DAEE7D, CIS
can be used to represent it and compute the following factorization. The
proposed CIS was designed for CPFA and GPFA, respectively, and described in
Section 3.2. Before executing CPFA, a prime table consisting of prime numbers
is needed. The number of prime numbers in the prime table is not fixed. In the
experimental tests, a prime table with 173,057,268 prime numbers ranged
among 32-bit integers was constructed. The value of an integer B is assumed
smaller than the biggest prime number in the prime table. All of the primer
numbers smaller than B are extracted from the prime table to do the
computations in step 3. Therefore, the value of B will affect the computation
time of step 3 directly. Under a fixed number of loop iterations Tc, the value of
B will be changed to twice when CPFA could not find p or q for an integer N.

CPU-based Pollard's p-1 Factorization Algorithm

//Object: to find p or q from an integer N
//Load the prime table from a disk to the main memory

for (integer i from 1 to Tc)
{
 Step1. Choose an integer ac, it could be 2 or generated randomly.

Step2. Extract a prime number p smaller than B from the prime table.
Step3. Compute:

⎣ ⎦∏=
≤≤ Bp

pBpe
2

log/log

Step4. Let b = Nae

c mod , if 1 < gcd(b-1, N) < N, then return the value of
greatest common divisor gcd(b-1, N).

Step5. Follow step 4, if gcd(b-1, N) equals to 1 or N, then go to step 2.
Step6. If finding a prime number p larger than B, then execute the next

iteration (B=2B).
}

3.2 CIS (Custom Integer System)

In the past, many research tried to improve the implementation of modular
exponentiation with Montgomery method and RNS. For a large integer in the
RNS, it can be encoded into an RNS representation with a basis, a set of co-
prime integers, and then this integer is stored as a vector of components
(modulo the basis for each component). For the multiplication and addition of
two large integers encoded by RNS with the basis, it is easy to do since the
computation of each component is independent. This system is useful for
encrypting a plaintext message M or decrypting a ciphertext C with a fixed pair
(N, E) and D. However, the RNS may be not suitable for CPFA and GPFA. The
reason is that there are an integer ac, many prime numbers p, and an integer N
should be computed in steps 3 to 5. For many prime numbers p, it may be time-
consuming to select a feasible basis for each p and then translate this p to a
vector of components. Therefore, it needs to design an adjustable data structure
to represent the integer and do the following factorization.

Hence, CIS and its operations are designed and implemented for CPFA and
GPFA, respectively. However, some extra operations or data structures are not
implemented specifically in CIS, such as the operations or structures for the
negative integer number, since CIS is only designed for CPFA and GPFA at
present. In general, a large integer can be formed as a character array to store
each digit by one byte. For example, an integer number 123 can be stored in a
character array {1, 2, 3} with size of 3 bytes. This method is simple but needs
more space when doing the operations of the integers. For example, when doing
the sum operation for two integers 123 and 987, it needs 9 bytes to store these
two integers and the possible carry for each digit. Moreover, it needs 6 addition
operations, not 3 addition operations, to compute the digit addition and the carry.
Therefore, a naive idea in CIS is to use the unsigned integer type to store the
integer. If an integer number is larger than the scope of one unsigned integer,
then use two or more unsigned integer to store this integer number. In addition,
the reserve space in the unsigned integer type is used to store the possible carry.
An example of integer representation in CIS is shown in Figure 1. In Figure 1,
the size of unsigned integer type is 32-bit and we can use eight unsigned integer
(256-bit of total) to store a 128-bit integer. The black area is the half size (16-bit)
of the unsigned integer to store the integer (128-bit of total) and the white area
is the half size (16-bit) of the unsigned integer to store the possible carry (128-
bit of total). By using the unsigned integer type, it can reduce the space
requirement for the large integer; however, the operations for large integers
represented in CIS should be designed.

Figure 1: An example of integer representation in CIS.

(a) addition operation in CIS. (b) subtraction operation in CIS.

Figure 2: The addition and subtraction operations for two large integers in
CIS.

For the operations of large integers represented in CIS, the procedure is to
do the operation for each unsigned integer in sequential. Figure 2 shows the
addition and subtraction operations for two large integers in CIS, respectively.
In Figure 2(a), each integer is represented in CIS and stored in arrays a, b. The
addition result without the possible carry is stored in array c’ and then combine
the carry to obtain the final result. In Figure 2(b), the procedure of subtraction
operation for two large integers in CIS is similar to that of addition operation.
However, the borrowing problem should be considered. In addition to addition
and subtraction operations of large integers, we also implement the
multiplication, shift, and modulo operations of large integers in CIS.

3.3 GPFA (GPU-based Pollard's p-1 Factorization Algorithm)

In CUDA, there are two parallelization techniques [18] to map tasks into
threads or thread blocks, one is inter-task parallelization and another is intra-
task parallelization. For inter-task parallelization, each thread exactly executes
one task; for intra-task parallelization, each task is executed by one thread
block. In this paper, the proposed GPFA is designed by using the inter-task
parallelization technique.

The designed GPFA algorithm was shown below.

GPU-based Pollard's p-1 Factorization Algorithm

//Object: to find p or q from an integer N
//Load the prime table from a disk to the main memory of CPU and then
Transfer it to the global memory of GPU.

//gridDim.x is the built-in variable represents the size of grid (number of thread
blocks in one grid).

// blockDim.x is the built-in variable represents the size of block (number of
threads in one thread block).

//blockIdx.x is the built-in variable represents the 1-D thread block index within
the grid.

//threadIdx.x is the built-in variable represents the 1-D thread index within the
thread block.

int linearID = blockDim.x×blockIdx.x+threadIdx.x;
int total_num_of_thread = gridDim.x×blockDim.x;
int ag = 2+linearID;

for (integer i from blockIdx.x×blockDim.x to blockIdx.x×blockDim.x+Tg -1)
{

 //pr(j) is the j-th prime number in the prime table.
 for (unsigned int j= linearID; pr(j) < B ; j+= total_num_of_thread)
 {
 Compute:

⎣ ⎦∏=
≤≤ Bp

pBpe
2

log/log

 Let b = Nae

c mod , if 1 < gcd(b-1, N) < N, then return the value of
greatest common divisor gcd(b-1, N) to the global memory.

 Follow last step, if gcd(b-1, N) equals to 1 or N, then continue.
 }

 ag = ag × ag %RAND_MAX+i+linearID;
}

In the beginning, the GPFA is the same with CPFA to load the prime table
from a disk to the main memory of CPU, and make necessary adjustment with B
and Tg. However, in GPFA, the data must be transferred from CPU to GPU and
then execute the GPU kernel function. The first problem in GPFA is how to
allocate the prime table and store the results (p or q) in the GPU’s memory.
Since the prime table will be accessed frequently by threads in thread blocks, it
is worth to use a cache mechanism to access it. When the size of the prime table
is small, it can be stored in the CM with 64 KB size limitation; however, the
prime table in the experimental tests is close up to 70 MB, the prime table is
allocated in the TM. Figure 3 shows that each thread loads the unique prime
number from the prime table in the TM, and the registers of each thread are used
to store a large integer N and an integer ag. The integer ag is selected as a
random number ac in CPFA. Three arguments, ag, prime numbers, and a large
integer N, are involved in the execution of kernel function on GPU. In GPFA, if
one thread obtains the p or q, it returns the result to the GM immediately and
then the result is transferred from the GM of GPU to the main memory of CPU.

In CUDA, there is an important characteristic that each thread in a thread

block has its own unique thread ID. Hence, GPFA can use different IDs (threads)
to deal with different data (prime numbers in the prime table). By this
characteristic, the unique ID of each thread among a grid can be calculated,
called thread linearize. In the 1-D type of thread blocks and threads, thread
linearize is:

linearID = blockDim.x×blockIdx.x+threadIdx.x, (5)

where the blockDim.x, blockIdx.x, and threadIdx.x are the built-in variables in
CUDA, they individually represent the size of block (number of threads in one
block), block ID (thread block index within the grid), and thread ID (thread
index within the thread block), respectively. For the selection of ag, it can use
the thread linearize to pick out the unique ag for each thread, such as:

ag = 2+linearID (6)

The execution steps of inner loop in GPFA are almost the same as the steps
3 to 5 in CPFA, except for returning the value of gcd result to the GM. By the
SIMT, when GPFA could not find p or q for an integer N in the inner loop, the
value of ag will be updated by each thread with the formula:

ag = ag × ag %RAND_MAX+i+linearID (7)

There are Tg times controlled by the external loop to update the value of ag by
each thread in thread blocks.

Figure 3: Memory allocation scenario of GPFA in CUDA.

4. Performance Analysis

In CPFA, the main object is to find p or q for a large integer N by generating a
random value ac and sequential searching a series of prime numbers (denoted as
pri) from the prime table (inner loop in CPFA). Assume that there are k prime
numbers {pr1, pr2, ..., prk-1, prk} in the prime table. If the number of external
loop (Tc) in CPFA is u, there are u random values of { ac,1, a c,2, ..., a c,u-1, a c,u}.
The computation cost of CPFA is determined by the B and Tc. In the worst case,
where the result of prime number is equal to B and Tc is equal to u, the time
complexity of CPFA is O(ku). Although the values of B and Tc can be set to
small, CPFA may not find the result. According to the asymptotic law for the
distribution of prime numbers, the number of prime numbers ()(xπ), less than
or equal to a real number x, is close to

x
xxπ

ln
)(= . (8)

Therefore, k equals to
B

BBπ
ln

)(= . Assumed that t is a fixed value, the time

complexity of CPFA is O(u
B

B
ln

).

In this paper, GPFA is designed by using the inter-task parallelization
technique. Assume that there are k prime numbers {pr1, pr2, ..., prk-1, prk} in the
prime table. It means that each thread do the computation for a pair (pri, ag) in
the inner loop. If there are gridDim.x×blockDim.x threads to do the tasks in the
inner loop, it needs y times to do the computation for all prime numbers in the
worst case, where

)blockDim.x×gridDim.x(ln

blockDim.x×gridDim.x
)(

blockDim.x×gridDim.x

×
=

==

B
B

Bπky
 (9)

Therefore, if the number of external loop (Tg) in GPFA is s and s is a fixed
value, the time complexity of GPFA is

O()
)blockDim.x×gridDim.x(ln

(
×

×
B

Bs).

Given a detail assumption for the cost of computing a prime number, tc for

CPFA and tg for GPFA, the theoretical computation time of CPFA and GPFA in

the worst case will be ctu
B

B)
ln

(and gt
B

Bs))
)blockDim.x×gridDim.x(ln

((
×

× ,

respectively. Hence, the theoretical speedup can be calculated according to the
formula:

)blockDim.x×gridDim.x()(

))
)blockDim.x×gridDim.x(ln

((

)
ln

(

)(
)(

×
×
×

=

×
×

==

g

c

g

c

ts
tu

t
B

Bs

tu
B

B

GPFATime
CPFATimespeedup

 (10)

According to the above formula, the speedup increases when the number of

threads increases. However, the number of threads is not infinite. By the inter-
task parallelization, the number of threads in a thread block is bounded
according to the memory usage. Moreover, the number of concurrent thread
blocks is bounded according to the number of SMs. Besides, considering the u
and s, in general, s is less than u since each thread can obtain various values of

Table 1: The testing data set represented as hexadecimal numbers.
Length N p q
RSA-41 12B1F259795 721F7 29EFD3
RSA-44 89FD383381B 120FC7 7A3D0D
RSA-46 3CF5F89ED5F5 C50069 4F37AD
RSA-47 600FF385C031 FF52D9 605119
RSA-48 878D4C7D68E9 ABB039 CA1E31
RSA-56 B8C8CBD2DAEE7D D985797 D978D0B
RSA-64 6926C73F919FA3E7 79E6711B DCD39125

ag and then the possibility to meet conditions by GPFA is larger than that by
CPFA. However, considering the tc and tg, tg is larger than tc since the clock rate
of CPU is faster than that of SP on GPU. Overall, GPFA can achieve better
performance than CPFA according to the performance analysis.

5. Experimental Results

In this paper, GPFA was implemented on three various GPU architectures:
GTX-260, S1070, and C2050 GPUs, and CPFA was implemented on Intel
Core2 Quad Q8200 2.33GHz CPU with 4G RAM running the Linux system.
The testing data set consisted of RSA-41 to RSA-64, shown in Table 1, was
used to evaluate CPFA and GPFA. For the testing data RSA-41 to RSA-56, the
value of B was set to 100,000; the value of B was set to 200,000 for RSA-64.
For the C2050 GPU, the experimental results are classified into configure and
nonconfig (non-configure) states to represent the configurable L1 cache of 48
KB and 16 KB in GPFA, respectively. In GPFA, the CUDA built-in variables
gridDim.x (size of grid) and blockDim (size of block) were set to 1024 and 64,
respectively.

Figure 4 illustrated the execution time by CPFA and GPFA under various
platforms, where y-axis is the scale of logarithm to base 10. In GPFA, the worst
case is RSA-64 factored within 40 seconds; however, the worst case in CPFA is
RSA-56 factored within 7,350 seconds. Since the factoring a large integer by
the Pollard's p-1 Factorization algorithm can be seen as a search problem under
a possibility, hence, the worst case for CPFA and GPFA may be different.
Moreover, the computation time is nonlinear, even is non-incremental, when the
size of input data increases. From Figure 4, the experimental results showed that
GPFA can greatly reduce the computation time by CPFA.

Figure 4: The execution time by CPFA and GPFA under various platforms.

Figure 5: The speedups by comparing GPFA with CPFA under various
platforms.

Figure 6: The average speedups achieved by GPFA under various
platforms.

Figure 5 illustrated the speedups by comparing GPFA with CPFA under
various platforms, where y-axis is the scale of logarithm to base 10. From
Figure 5, GPFA can achieve 2248x speedup for RSA-56 under the
C2050(configure) GPU. Although the speedups by comparing GPFA with
CPFA among the testing data set are not linear (search problem), GPFA
achieved 1197.5x average speedup under the C2050(configure) GPU (Figure 6).
Figure 6 showed the average speedups achieved by GPFA under various
platforms. From Figure 6, GPFA achieved at least 240x average speedup under
the GTX-260. Moreover, the performance by GPFA under C2050(configure) is
better (about 1.4x) than that by GPFA under C2050(nonconfig). This result
showed that the performance increases when the cache size on GPU increases.

6. Conclusions

RSA is a public-key cryptography algorithm to use a pair (N, E) as the public
key and D as the private key. The security of RSA algorithm relies on the
hardness of factoring the large number N without the private key D. Recently, it
is very hard and no known polynomial time algorithms can be used to extract p
and q from a large number N. However, GPU is a massively multi-threaded
processor and expects the thousands of concurrent threads to fully utilize its
computing power. Hence, it may be a challenge for the RSA algorithm to
protect the data when using GPUs with CUDA to factoring the large number N.

In this paper, an efficient parallel RSA decryption algorithm, GPFA, for
many-core GPUs with CUDA was proposed. The experimental results showed
that GPFA can achieve 1197.5x average speedup compared with CPFA, and
within 40 seconds to find out the result of factoring a RSA-64 integer. Although
GPFA is not used to factoring RSA-128 or larger integers in this paper, it may
be possible to factor them by using multiple-GPUs within a reasonable time.

Acknowledgement

Part of this work was supported by the National Science Council under the
grants NSC-100-2221-E-126 -007 -MY3 and Industrial Technology Research
Institute under the grants SCRPD2B0081.

References

[1] Barreto, P., and Rijmen, V., “The Whirlpool hashing function”, First open

NESSIE Workshop, 2000.
[2] Chen, Z., and Schaumont, P., “pSHS: A Scalable Parallel Software

Implementation of Montgomery Multiplication for Multicore Systems”,
Proc. Design, Automation and Test in Europe, 843-848 (2010).

[3] Cook, D., Ioannidis, J., Keromytis, A., and Luck, J., CryptoGraphics:
Secret Key Cryptography Using Graphics Cards, 2005.

[4] Costigan, N., and Schwabe, P. “Fast elliptic-curve cryptography on the
Cell Broadband Engine”, LNCS, 368-385 (2009).

[5] Costigan, N., and Scott, M. “Accelerating SSL using the Vector
processors in IBM's Cell Broadband Engine for Sony's Play station 3”,
Cryptology ePrint Archive, 061 (2007).

[6] Diffie, W., and Hellman, M., “New directions in cryptography”, IEEE
Trans. Information Theory, vol. 22, 644-654 (1976).

[7] Fan, W., Chen, X., Li, X., “Parallelization of RSA Algorithm Based on
Compute Unified Device Architecture”, Proc. Ninth International
Conference on Grid and Cloud Computing, 174-178 (2010).

[8] Fleissner, S., “GPU-Accelerated Montgomery Exponentiation”, LNCS
4487, 213 (2007).

[9] Flynn, M., “Some Computer Organizations and Their Effectiveness”,
IEEE Trans. Comput., vol. C-21, 948 (1972).

[10] Fujimoto, N., “High Throughput Multiple-Precision GCD on the CUDA
Architecture”, Proc. IEEE International Symposium on Signal Processing
and Information Technology, 507-512 (2009).

[11] Gaj, K., Kwon, S., Baier, P., Kohlbrenner, P., Le, H., Khaleeluddin, M.,
Bachimanchi, R., “Implementing the Elliptic Curve Method of Factoring
in Reconfigurable Hardware”, LNCS 4249, 119-133 (2006).

[12] Hankerson, D., Menezes, A., and Vanstone, S.A., Guide to Elliptic Curve
Cryptography, Springer-Verlag, 2004.

[13] Harrison, O., and Waldron, J., “Efficient Acceleration of Asymmetric
Cryptography on Graphics Hardware”, Proc. 2nd International
Conference on Cryptology in Africa: Progress in Cryptology, 350-367
(2009).

[14] Hermans, J., Vercauteren, F., and Preneel, B., “Speed Records for NTRU”,
Proc. International conference on Topics in Cryptology, 73-88 (2010).

[15] Jang, K., Han, S., Han, S., Moon, S., Park, K., “Accelerating SSL with
GPUs”, ACM SIGCOMM, 437-438 (2010).

[16] Lai, X., and Massey, J.L., and Murphy, S., “Markov ciphers and
differential cryptanalysis”, Adv. Cryptology, 17-38(1992).

[17] Lenstra Jr., H. W., “Factoring integers with elliptic curves”, Annals of
Mathematics, vol. 126, no. 3, 649-673 (1988).

[18] Liu, Y., Maskell, D., Schmidt, B. “CUDASW++: optimizing Smith-
Waterman sequence database searches for CUDA-enabled graphics
processing units”, BMC Research Notes, vol. 2, 73 (2009).

[19] Manavski, S, “Cuda compatible GPU as an efficient hardware accelerator
for AES cryptography”. Proc. IEEE Signal Processing and
Communication, 65-68 (2007).

[20] McKee, J., “Speeding Fermat's factoring method”, Mathematics of
Computation, vol. 68, 1729-1737 (1999).

[21] Menezes, A.J., Paul, C.V.O., and Scott, A.V, Hand-book of applied
cryptography, CRC Press, Boca Raton, Florida, 1996, ISBN 0-8493-8523-
7.

[22] Moss, A., Page, D., and Smart, N.P., “Toward Acceleration of RSA Using
3D Graphics Hardware”, Proc. 11th IMA international conference on
Cryptography and coding, 364-383 (2007).

[23] Moss, A., Page, D., and Smart N.P., “Executing Modular Exponentiation
on a Graphics Accelerator”, IACR Cryptology ePrint Archive, 187 (2007).

[24] National Bureau of Standards, Data Encryption Standard, FIPS-Pub.46,
National Bureau of Standards, U.S. Department of Commerce,
Washington D.C., January 1977.

[25] National Institute of Standards and Technology, Federal Information
Processing Standard 197, The Advanced Encryption Standard (AES),
2001.

[26] Nickolls, J., Buck, I., Garland, M., and Skadron, K., “Scalable parallel
programming with CUDA”, ACM Queue, vol. 6, 40-53 (2008).

[27] Pelzl, J., Simka, J., Kleinjung, T., Franke, J., Priplata, C., Stahlke, C.,
Drutarovsky, M., Fischer, V., and Paar, C. “Area-time efficient hardware
architecture for factoring integers with the elliptic curve method”, Journal
IEE Proc. Information Security, vol. 152, no. 1, 67-78 (2005).

[28] Pollard, J. M., “Theorems of Factorization and Primality Testing”, Proc.
Cambridge Philosophical Society, vol. 76, no. 3, 521-528 (1974).

[29] Pollard, J. M., “A Monte Carlo method for factorization”, BIT Numerical
Mathematics, vol. 15, no. 3, 331-334 (1975).

[30] Rivest, R., MIT Laboratory for Computer Science and RSA Data Security,
Inc. 1992.

[31] Rivest, R.L., Shamir, A., and Adleman, L.M., “A method for obtaining
digital signatures and public-key cryptosystems”, Comm. ACM, vol. 21,
no. 2, 120-126 (1978).

[32] Rosenberg, U., Using Graphic Processing Unit in Block Cipher
Calculations. Master's thesis, University of Tartu (2007).

[33] Secure Hash Standard. National Institute of Standards and Technology,
Washington, 1995. Note: Federal Information Processing Standard 180-1.

[34] Standards for Efficient Cryptography Group (SECG), SEC 1: Elliptic
Curve Cryptography, Version 1.0, September 20, 2000.

[35] Szerwinski, R., and Guneysu, T., “Exploiting the Power of GPUs for
Asymmetric Cryptography”, LNCS 5154, 79-99 (2008).

[36] Yamanouchi, T., AES Encryption and Decryption on the GPU. Addison
Wesley Professional, 2007.

Yu-Shiang Lin received a B.S. degree in Department of Computer Science and Information
Engineering from Chang Gung University in 2010. He is currently a Master student in the
Department of Computer Science and Information Engineering at Chang Gung University. His
research interests are in the areas of Parallel Processing and Next-Generation Sequencing.

Chun-Yuan Lin received a B.S. degree in Department of Information Engineering and Computer
Science from Feng Chia University in 1999, and the M.S. and Ph.D. degrees in Department of
Information Engineering and Computer Science from Feng Chia University in 2000 and 2003,
respectively. He joined the Institute of Molecular and Cellular Biology and the Department of
Computer Science at National Tsing Hua University as a post-doctoral fellow in 2003 and 2006,
respectively. In 2007, he joined the Department of Computer Science and Information Engineering
at Chang Gung University as an assistant professor. He also is a faculty Member at Research center
for Emerging Viral Infections in Chang Gung University. His research interests are in the areas of
Parallel and Distributed Computing, Proteomics, Genomics, Systems Biology, Next-Generation
Sequencing and Computational Chemistry.

Der-Chyuan Lou was born in Chiayi, Taiwan, Republic of China, on Mar. 18th, 1961. He received
the B.S. degree from Chung Cheng Institute of Technology (CCIT), National Defense University,
Taiwan, R.O.C., in 1987, and the M.S. degree from National Sun Yat-Sen University, Taiwan,
R.O.C., in 1991, both in electrical engineering. He received the Ph.D. degree in 1997 from the
Department of Computer Science and Information Engineering at National Chung Cheng University,
Taiwan, R.O.C. He was an Assistant, Lecturer, Associate Professor, and Professor with the
Department of Electrical Engineering at CCIT, from 1987 to 2009. He had served as Director of
Computer Center of CCIT from 2004 to 2006. Currently, he is a Professor with the Department of
Computer Science and Information Engineering, Chang Gung University. His research interests
include multimedia security, steganography, cryptography, computer arithmetic, and distributed
system. Prof. Lou is currently an Area Editor for Security Technology of Elsevier Science’s Journal
of Systems and Software. He is the owner of the eleventh AceR Dragon Ph.D. Dissertation Award.
He has been selected and included in the 15th and 29th edition of Who,s Who in the World which
has been published in 1998 and 2012, respectively.

